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Departamento de F́ısica Teórica y del Cosmos, CAPFE,

Universidad de Granada, E-18071 Granada, Spain

E-mail: pittau@ugr.es

Abstract: We present a calculation of the NLO QCD corrections for the production

of three vector bosons at the LHC, namely ZZZ, W+W−Z, W+ZZ, and W+W−W+

production. The virtual corrections are computed using the recently proposed method of

reduction at the integrand level (OPP reduction). Concerning the contributions coming

from real emission we used the dipole subtraction to treat the soft and collinear divergences.

We find that the QCD corrections for these electroweak processes are in the range between

70 and 100 percent. As such they have to be considered in experimental studies of triple

vector boson production at the LHC.

Keywords: NLO Computations, Hadronic Colliders, QCD, Standard Model.

mailto:binoth@ph.ed.ac.uk
mailto:giovanni.ossola@nyu.edu
mailto:costas.papadopoulos@cern.ch
mailto:pittau@ugr.es
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
0
8
2

Contents

1. Introduction 1

2. Virtual corrections 2

2.1 ZZZ production 4

2.2 W+W−Z production 5

2.3 W+ZZ production 6

2.4 W+W−W+ production 6

3. Real emission 6

3.1 Dipole subtraction 6

3.2 Phase space slicing 9

4. Numerical results 10

5. Summary and conclusions 15

1. Introduction

For TeV collider physics hard multi-particle final states are ubiquitous and theoretical

calculations can not provide reliable predictions without taking into account higher or-

der information. Unfortunately the evaluation of one-loop amplitudes with many external

particles is technically very challenging, which motivated a priority list for one-loop com-

putations relevant for the Large Hadron Collider at CERN, the so called Les Houches wish

list [1]. Due to the relevance for LHC phenomenology many new avenues have been ex-

plored in the last few years, ranging from evaluation techniques of Feynman diagram [2 – 6]

to unitarity based approaches [7] in different variations [8 – 15].

Higher order QCD results have been provided recently for multi-boson production

pp → ZZZ,WWZ,HHH processes [16 – 19], in the context of weak boson fusion [20 – 24],

pp → Hjj with effective gluon-Higgs couplings [25], gg → Hqq̄ [26], and pp → tt̄j [27].

In two recent papers [28, 29], a new technique (OPP) has been introduced for the

reduction of arbitrary one-loop sub-amplitudes at the integrand level [30] by exploiting

numerically the set of kinematical equations for the integration momentum, that extend

the quadruple, triple and double cuts used in the unitarity-cut method [31 – 33]. The

method requires a minimal information about the form of the one-loop (sub-)amplitude

and therefore it is well suited for a numerical implementation.

In the present work, the OPP reduction is applied to the calculation of the next-to-

leading order QCD correction for the production of three vector bosons at the LHC. This
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includes the case of ZZZ production, as well as the W+W−Z, W+ZZ, and W+W−W+

production. The physics motivation for a reliable prediction of these processes is two-fold:

firstly one is sensitive to quartic vector boson couplings and secondly the leptonic decays

are prominent Standard Model backgrounds for multi-lepton and missing energy signatures

present in many new physics scenarios.

As the triple vector boson production is genuinely an electroweak process one can not

expect that the inclusion of QCD effects leads to the reduced scale dependence typically

seen in this kind of calculations. In contrary it can be qualitatively understood that the

LO predictions show a relatively small sensitivity when varying the factorization scale.

This is because the parton distribution functions are called for x-values which are around

the scaling region where one has a very mild Q2-dependence. After adding the order αs

corrections one expects to observe a LO type scale variation in the added contribution.

The production of three Z bosons has already been discussed by Lazopoulos et al. in

ref. [16]. We also presented some preliminary results in refs. [1, 34]. The W+W−Z case

has been studied in ref. [17] for all combinations of leptonic final states. Results for W+ZZ

and W+W−W+ production have not been presented in the literature yet.

Our calculation is composed of two main parts: the evaluation of virtual corrections,

namely one-loop contributions obtained adding a virtual particle to the tree-level diagrams,

and corrections from the real emission of one additional massless particles from initial

and final states, needed in order to control and cancel infrared singularities. The virtual

corrections are computed using the OPP reduction [28, 29]. In particular, we make use

of CutTools [35], a FORTRAN90 code that implements the general method of reduction.

Concerning the contributions coming from real emission we used the dipole subtraction

method [36] to isolate the soft and collinear divergences and checked the results using the

phase space slicing method [37, 38] with soft and collinear cutoffs, as outlined in [39, 40].

The paper is organized as follows. In section 2, we report the details of the calculation

of the virtual part. Section 3 is devoted to the discussion of soft and collinear singularities.

In section 4, we show our results, including transverse momentum and rapidity distributions

for the different processes studied in this paper. Finally, in section 5, we will give a summary

of the work done and present our conclusions.

2. Virtual corrections

We consider the process

q(p1) + q̄(p2) −→ V (p3) + V (p4) + V (p5) (2.1)

where V = Z,W . All momenta are chosen to be incoming, such that
∑

i pi = 0.

At the tree-level, diagrams can be grouped in four different topologies, which are

illustrated in figure 1. One-loop corrections are obtained by adding a virtual gluon to the

tree-level structures, as depicted in figures 2 and 3.

We perform a reduction to scalar integrals using the OPP reduction method [28, 29]. In

this approach, we need to provide the numerical value of the numerator of the integrand in
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Figure 1: Tree-level structures of Feynman diagrams contributing to qq̄ → V V V , where V = Z, W .

Dashed internal lines can represent W, Z, Goldstone bosons or photons.

the loop integrals. We refer to it as the numerator function N(q), where q is the integration

momentum.

The numerator function N(q) can be expressed in terms of 4-dimensional denominators

Di = (q + pi)
2 − m2

i as follows

N(q) =

m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏

i6=i0,i1,i2,i3

Di

+

m−1∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1∏

i6=i0,i1,i2

Di

+

m−1∑

i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏

i6=i0,i1

Di

+

m−1∑

i0

[a(i0) + ã(q; i0)]

m−1∏

i6=i0

Di . (2.2)

The quantities d(i0i1i2i3) are the coefficients of 4-point scalar functions with denomina-

tors labeled by i0, i1, i2, and i3. In the same way, c(i0i1i2), b(i0i1), and a(i0) are the

coefficients of the 3-point, 2-point and 1-point scalar functions, respectively. The other

quantities appearing in eq. (2.2), marked with a “tilde”, vanish upon integration over q.

Such a separation is always possible and the set of coefficients d, c, b, a is immediately inter-

pretable as the ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop functions

contributing to the amplitude.

Since the structure of eq. (2.2) is general, namely independent from the particular

process that we want to study, the task of computing the one-loop amplitude is then

reduced to the algebraical problem of fitting the coefficients d, c, b, a by evaluating the

function N(q) a sufficient number of times, at different values of q, and then inverting the

system. That can be achieved quite efficiently by singling out particular choices of q such

that, systematically, 4, 3, 2 or 1 among all possible denominators Di vanishes. Then the

system of equations is solved iteratively.1

First one determines all possible 4-point functions, then the 3-point functions and so

on. In summary, simply by evaluating the numerator function N(q) for a given set of values

of q, we can extract all the coefficients in eq. (2.2).

1A method to optimize the solution of the system has been very recently presented in [41].
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As a possible future development, the numerical evaluation of N(q) could be performed

automatically without relying on Feynman diagrams, by means of recursion relations. For

the current project however, we still follow the traditional approach of computing all the

expression originating from Feynman diagrams, and use them to evaluate numerically the

numerator functions. An example in section 2.1 will clarify the details of the technique

used.

The coefficients determined in this manner should be multiplied by the corresponding

scalar integrals. Since, in the process that we are studying, no q-dependent massive prop-

agators appear, we will only need massless scalar integrals. They are computed using the

package OneLOop written by A. van Hameren [5].

The last step is the calculation of the rational terms. As explained in ref. [42], there are

two sources of the rational terms: a first contribution, that we call R1, originates from con-

sidering the fact that the denominators appearing in the scalar integrals are n-dimensional

objects, while the expansion of eq. (2.2) is purely 4-dimensional. These contributions can

be automatically extracted in the reduction process, either by computing extra-integrals

as explained in ref. [29], or by means of a modified version of eq. (2.2) in which the numer-

ator function is expressed directly in terms of n-dimensional denominators. The second

approach is illustrated in ref. [42] and implemented in the package CutTools [35]. We

checked that the results obtained for R1 with the two methods are in perfect agreement.

The second contribution, that we call R2, is instead originating from the numerator

function. For many processes, N(q) can be treated as a purely four-dimensional object.

However, in general, it should be written as N̄(q) = N(q) + Ñ(q2, ǫ), where N̄(q) is the n-

dimensional numerator function. Ñ(q2, ǫ) can originate, for example, from the contraction

of Dirac matrices or from powers of q2 in the numerator function [43] and vanishes in the

ǫ → 0 limit. In ref. [42] we discussed in detail this topic and showed how R2 can be obtained,

for example, by using a set of tree-level like Feynman rules. For the calculation presented

in this paper, however, it is easy to extract these remaining rational parts directly.

2.1 ZZZ production

In this subsection we describe the evaluation of the virtual QCD corrections to the process

qq̄ → ZZZ. The virtual part of the calculation involves eight different diagrams, which

have been depicted in figure 2. Each diagram should be evaluated for six permutations of

the final particles.

As an example, let us consider the pentagon diagram (the last diagram of figure 2). In

our notation, the integrand will read

A5(q) =
N5(q)

[q2][(q + p1)2][(q + p1 + p5)2][(q − p2 − p3)2][(q − p2)2]
(2.3)

with

N5(q) =
{
ū(p2) γα P(q−p2) V Z

3 P(q−p2−p3) V Z
4 P(q+p1+p5) V Z

5 P(q+p1) γα u(p1)
}

(2.4)

The function P (q) is the numerator of the quark propagator

P(q) = /q ,
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Figure 2: Diagrams contributing to virtual QCD corrections to qq̄ → ZZZ

while V Z
i = V Z · ǫi , namely the contraction between the polarization vector of the i-th Z

boson ǫi and the γ-matrix in the vertex Zqq̄

V Z
µ = ieγµ(g−f ω− + g+

f ω+) (2.5)

where

g+
f = −s

c
Qf , g−f =

I3
W,f − s2Qf

sc
, ω± = (1 ± γ5)/2 , s = sin θW , c = cos θW . (2.6)

For any fixed value q0 of integration momentum, and for a given phase space point, N5(q0)

is simply the trace of a string of known matrices. After choosing a representation for Dirac

matrices and spinors, we evaluate N(q) by performing a naive matrix multiplication. By

providing this input to the reduction algorithm, we can compute all the coefficients of the

scalar integrals (in other words, the “cut-constructible” part of the calculation).

In the same fashion, we can repeat the calculation for the other seven diagrams. How-

ever, our method allows for a further simplification: for each fixed permutation of the final

legs, only the q-dependent denominators of eq. (2.3) will appear also in the remaining dia-

grams. Therefore, we can combine all diagrams in a single numerator function and perform

the reduction directly for the sum of such diagrams, allowing for a one-shot evaluation of

the resulting scalar coefficients.

We checked that our results, both for poles and finite parts, agree with the results

obtained by the authors of ref. [16].

2.2 W+W−Z production

With the same technique we also evaluated the virtual QCD corrections to the process

qq̄ → W+W−Z. The structure of the diagrams is more involved with respect to the ZZZ

case. There are in fact 19 different tree level diagrams. Adding QCD corrections, we obtain

58 one-loop diagrams contributing to this process. In addition to the structures already

depicted in figure 2, in this case we can also have the diagrams appearing in figure 3.

A very similar calculation has been presented recently by Hankele and Zeppenfeld [17].

They studied the NLO QCD corrections to the production of 6 leptons in hadronic colli-

sions, via WWZ production. A comparison with their results, however, is not straightfor-

ward and has not been performed yet.
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Figure 3: Additional NLO structures contributing in the production of W+W−Z, W+ZZ, and

W+W−W+, that do not appear in the ZZZ case. Dashed internal lines can represent W, Z,

Goldstone bosons or photons.

2.3 W+ZZ production

Concerning the production of W+ZZ, we have 15 tree-level diagrams, which, after adding

QCD corrections, give rise to 69 diagrams at NLO. Since in this process we generate a single

charged W+, the initial state should be of the type ud̄ (rather then uū as for W+W−Z

and ZZZ).

2.4 W+W−W+ production

Starting again from an initial state of the type ud̄, we should consider 15 diagrams at the

tree-level and 53 diagrams including NLO QCD corrections.

3. Real emission

The real emission corrections for the production process of three vector bosons

q + q̄ → V + V + V (3.1)

fall in the following three categories

q + q̄ → V + V + V + g (3.2)

g + q → V + V + V + q (3.3)

g + q̄ → V + V + V + q̄ . (3.4)

IR divergences arise if a massless final state particle becomes soft or collinear to an initial

parton. We deal with the IR part of the calculation by using the two cut-off phase space

slicing method [39, 40] and the dipole formalism of Catani and Seymour [36]. Let us first

provide the relevant formulas for the dipole subtraction method.

3.1 Dipole subtraction

The partonic cross section at the NLO level consists of Born term (B), virtual corrections

(V ), collinear counter terms (C) defined on the 3-particle phase space and the real emission
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corrections (R). Dipole terms (A) which approximate the real emission matrix elements

in all soft/collinear regions are subtracted from the real matrix element before integration

over the four-particle phase space. The same terms are added back, integrated over the

dimensionally regulated phase space of the soft/collinear particle:

σNLO
qq̄ =

∫

VVVg

[
dσR

qq̄ − dσA
qq̄

]
+

∫

VVV

[
dσB

qq̄ + dσV
qq̄ +

∫

g

dσA
qq̄ + dσC

qq̄

]
. (3.5)

After subtracting the dipole terms the real emission cross section is finite and can be

evaluated in 4 dimensions. The same is true for the other terms after the pole parts have

been canceled.

The colour averaged leading order contribution is given by

dσB
qq̄ =

CS

N

1

2s12
|MB |2 dΦVVV (3.6)

where MB is the kinematic part of the leading order amplitude and s12 = 2p1 · p2. If

two (three) vector bosons are identical a symmetry factor CS = 1/2 (CS = 1/6) has to be

included. The three particle phase space of the vector bosons is denoted as dΦVVV. The

real emission corrections are defined on the four particle phase space dΦVVVx where x can

be either g, q, or q̄.

In the case of a qq̄ initial state two dipoles are needed as subtraction terms. The

subtraction term for the gluon emission off the quark (neglecting O(ǫ) terms) is

Dq1g6,q̄2 =
8παsCF

2x̃ p1 · p6

(
1 + x̃2

1 − x̃

)
|MB

qq̄(p̃16, p2, p̃3, p̃4, p̃5)|2 (3.7)

where

x̃ =
p1 · p2 − p2 · p6 − p1 · p6

p1 · p2

p̃16 = x̃ p1,

K = p1 + p2 − p6,

K̃ = p̃16 + p2

Λµν = gµν − 2(Kµ + K̃µ)(Kν + K̃ν)

(K + K̃)2
+

2K̃µKν

K2

p̃j = Λ pj (3.8)

defines the dipole kinematics: q(p̃16) + q̄(p2) → V (p̃3) + V (p̃4) + V (p̃5). The subtraction

term for gluon emission off the anti-quark is obtained by interchanging p1 ↔ p2. The real

emission cross section including subtraction terms reads

dσR
qq̄ − dσA

qq̄ =
CS

N

1

2s12

[
CF |MR

qq̄|2 −Dq1g6,q̄2 −Dq̄2g6,q1

]
dΦVVVg (3.9)

The part of the NLO cross section which is defined on the 2 → 3 phase space is obtained

after analytic integration of the dipole terms over the phase space of the unresolved particle.
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A collinear counter term is added to treat the collinear 1/ǫ pole which is absorbed into

the parton distribution functions at a scale µF . All details can be found in [36]. The part

which has to be added to the virtual corrections is given by

dσC
qq̄ +

∫

g

dσA
qq̄ =

αsCF

2π

Γ(1 + ǫ)

(4π)−ǫ

(
s12

µ2

)−ǫ [
2

ǫ2
+

3

ǫ
− 2π2

3

]
dσB

qq̄

+
αsCF

2π

1∫

0

dx Kq,q(x) dσB
qq̄(xp1, p2)

+
αsCF

2π

1∫

0

dx Kq̄,q̄(x) dσB
qq̄(p1, xp2) (3.10)

where the term

Kq,q(x) = Kq̄,q̄(x)

=

[
1 + x2

1 − x

]

+

log

(
s12

µ2
F

)
+

[
4 log(1 − x)

1 − x

]

+

+ (1 − x) − 2(1 + x) log(1 − x)

contains plus distributions which are defined as usual

1∫

0

dx

[
g(x)

1 − x

]

+

f(x) =

1∫

0

dx g(x)
f(x) − f(1)

1 − x
(3.11)

For initial states with a gluon no soft contribution is present and thus one has

σNLO
gq =

∫

VVV

[∫

q

dσA
gq + dσC

gq

]
+

∫

VVVq

[
dσR

gq − dσA
gq

]
(3.12)

In this case only one subtraction term is needed, namely

dσR
gq − dσA

gq =
CS

N

1

2s12

[
TR|MR

gq|2 −Dg1q6,q2

]
dΦVVVq , (3.13)

where the dipole is given by

Dg1q6,q2 =
8παs TR

x̃ 2 p1 · p6
[1 − 2 x̃ (1 − x̃)] |MB

qq̄(p̃j)|2 . (3.14)

The momentum mappings p̃j are identical to the ones in eq. (3.8).

The initial state collinear singularity is again absorbed by the pdfs through a counter

term

dσC
gq +

∫

q

dσA
gq =

αsTR

2π

1∫

0

dxKg,q(x) dσB
qq̄(xp1, p2) (3.15)

Kg,q(x) = [x2 + (1 − x)2] log

(
s12

µ2
F

)
+ 2x(1 − x) + 2[x2 + (1 − x)2] log(1 − x) .
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The formulas for the cases qg, q̄g, gq̄ are identical up to relabeling of momenta.

The hadronic differential cross section with hadron momenta P1 and P2 is the sum

over all partonic initial states convoluted with the parton distribution functions

dσ(P1, P2) =
∑

ab

∫
dz1dz2fa(z1, µF )fb(z2, µF )dσab(z1P1, z2P2) (3.16)

The sum runs over the six partonic configurations qq̄, q̄q, gq, qg, gq̄, q̄g.

3.2 Phase space slicing

To have an independent check for the real radiation we have also implemented the phase

space slicing method in its two cut-off variant [39, 40]. One splits the phase space in

soft, collinear and hard regions with the help of the cut-off parameters δs and δc. In the

soft region the 2 → 4 matrix element is replaced by the eikonal approximation. In the

collinear region one has a convolution of a splitting function with the Born term. Adding

the soft/collinear parts to the virtual corrections all poles cancel and one obtains the three-

particle contribution

σ(3) =
(αs

2π

)∑

a,b

∫
dz1dz2dσB

ab

[
fa(z1, µF )fb(z2, µF ) (As

0 + Av
0 + 2Asc

0 ) (3.17)

+fa(z1, µF )f̃b(z2, µF ) + f̃a(z1, µF )fb(z2, µF )

]

with

As
0 = 4 ln2 δs CF

Asc
0 (q → qg) = CF (2 ln δs + 3/2) ln

s12

µ2
f

Av
0 =

dσV
ab

dσB
ab

. (3.18)

The f̃ functions are given by

f̃a(x, µF ) =
∑

b

∫ 1−δsδab

x

dz

z
fb(x/z, µF )P̃ab(z) . (3.19)

where

P̃ab(z) = Pab(z) ln

(
δc

1 − z

z

2xp1 · p2

µ2
F

)
− P ′

ab(z) . (3.20)

The upper limit 1− δs ensures that the soft region which is already dealt with is excluded.

The Kronecker δab indicates that for a 6= b there is only a collinear divergence and no soft

cut-off is needed.
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In our case we need only the splitting functions Pqq(z) and Pgq(z). If we write

Pab(z, ǫ) = Pab(z) + ǫP ′
ab(z), we have

Pqq(z) = CF
1 + z2

1 − z
(3.21)

P ′
qq(z) = −CF (1 − z)

Pgq(z) = TR (z2 + (1 − z)2)

P ′
gq(z) = −2TR z(1 − z)

We see that the f̃ functions contain an explicit logarithm of δc as well as logarithmic

dependencies on δs which are built up by the integration on z1, z2.

The four-body contribution is given by

σ(4) =
∑

a,b=q̄,q,g

∫
dz1dz2fa(z1, µF )fb(z2, µF )dσ̂R

ab , (3.22)

with the hard-non-collinear partonic cross section given by

dσ̂R
ab =

CS

2s12

∫

HC

∑
|MR

ab|2dΦVVVx , (3.23)

where
∑|MR|2 is the two-to-four body squared matrix element averaged (summed) over

initial (final) degrees of freedom, dΦVVVx is the four-body phase space and the hard non-

collinear region denoted by HC is defined by

E6 > δs

√
s12

2
2p1 · p6, 2p2 · p6 > δc s12 (3.24)

where p6 is the momentum of the soft/collinear parton with energy E6.

Both methods have been implemented in HELAC[45]. The results show excellent agree-

ment between the two methods. In the numerical results presented below we only show

the results of the dipole subtraction approach.

4. Numerical results

We present in this section a selection of the results that we obtained for the four processes

studied in this paper.

The complete virtual part of the next-to-leading order calculation for the four processes

studied in this paper has been performed using CutTools [35] and also checked against an

independent code. The two programs provide identical results for the amplitudes studied.

As further tests, we checked that the tree-level results obtained using Feynman diagrams

coincides with the results obtained with HELAC [45] and that we reconstruct the correct

structure for the poles after integration. Concerning the finite parts, we agree with the

results obtained by the authors of ref. [16], for the production of three Z bosons. In this

section we will mostly focus on the processes for which no results have appeared yet in the

literature, namely the production of W+W−W+ and W+ZZ.
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We use the following values for the electroweak parameters:

MW = 80.4 GeV , MZ = 91.1875 GeV , GF = 1.16639 · 10−5 GeV−2 . (4.1)

In all cases presented here, we set
√

s = 14 TeV and used CTEQ6L1 [44] with αs(MZ) =

0.129 at NLO. For the electroweak couplings we use the the Gµ scheme with

αem =

√
2 GF M2

W sin2 θW

π
(4.2)

and

sin2 θW = 1 − M2
W /M2

Z (4.3)

The tree-level cross section has been evaluated using the HELAC event generator [45].

The same programme, appropriately adapted, has been used to calculate also the real

corrections. The virtual corrections have been calculated on the basis of unweighted tree-

order events produced by HELAC with an indicative CPU time of 180 ms per event, which is

quite good taking into account that the numerical calculation of one-loop amplitudes (the

numerators of the OPP method) is performed using standard momentum representation of

Feynman graphs without any optimization. A conservative comparison with the efficiency

of the tree order calculation, based on HELAC, shows that a further improvement of the

order of 101 − 102 is to be expected.

Since the purpose of our paper is to show the feasibility of the OPP method in a

realistic situation, the results we present here are indicative and they constitute by no

means a detailed discussion of the phenomenology of these processes. Partial results have

been already presented in [1, 34].

It should be mentioned however that all results are available as (un)weighted events,

which means that an exhaustive study in the full phase space, both for three- and four-

particle final states,2 poses no problem and will be postponed for the future, taking into

account also decay products and intermediate Higgs contributions.

In figure 4, we show results for the pT distributions of all processes. For each phase

space point, the pT of each of the three bosons gives an entry in the histograms. The final

result is then divided by 3, yielding, as a normalization factor, the total cross section. The

corresponding K-factors are depicted in figure 5. In the W+ZZ and W+W−W+ cases, we

observe an interesting increase in the K-factor for high values of the transverse momentum.

The corresponding total cross sections are contained in table 1. As we can see the

NLO corrections are quite significant, resulting to overall K-factors of order ∼ 2.

In figure 6, we show, as an indicative case, the rapidity distribution for WWW pro-

duction, which is the process with the highest cross section. Also here, the rapidity of each

of the three W s gives an entry in the histograms, that are eventually normalized to the

total cross section.

The K-factor appears to have now an important dependence on the phase space, es-

pecially near the borders of the available rapidity region

2Of course both positive and negative contributions have been taken into account, separately.
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Figure 4: Transverse momentum distribution, as defined in the text, for the four processes pp →
V V V : NLO (solid line) compared with the LO contribution (dashed line).

Process scale µ Born cross section [fb] NLO cross section [fb]

ZZZ 3MZ 9.7(1) 15.3(1)

WZZ 2MZ + MW 20.2(1) 40.4(2)

WWZ MZ + 2MW 96.8(6) 185.5(8)

WWW 3MW 82.5(5) 146.2(6)

Table 1: Cross section for the four processes, corresponding to the distributions in figure 4. Dif-

ferent values of the factorization(renormalization) scale are used for the different processes.
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Figure 5: K−factors, corresponding to the plots in figure 4

Let us discuss now the results obtained for the production of W+W−W+ and W+ZZ.

In tables 2 and 3 we present the results for the cross sections (in fb) of pp → W+W−W+

and pp → W+ZZ, respectively. Each table contains the Born level, the NLO result and

the corresponding K-factor.

We close this section by commenting on our choice of the pdfs, which corresponds

to a LO set. As we already pointed out in the Introduction, as the LO contribution

contains no αs dependence, no improvement on the renormalization scale dependence is

expected. This fact is evident from tables 2 and 3. By including higher order corrections

one expects to cancel the leading logarithm in the factorization scale which governs the

DGLAP evolution of the parton distribution functions. However, as triple vector boson
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Figure 6: Rapidity distribution, as defined in the text, for pp → W+W−W+: on the left plot,

NLO (solid line) compared with the LO contribution (dashed line) in logarithmic scale; on the right,

the corresponding K−factor. The scale is set to µ = 3MW .

scale σB σNLO K

µ = M/2 82.7(5) 153.2(6) 1.85

µ = M 81.4(5) 144.5(6) 1.77

µ = 2M 81.8(5) 139.1(6) 1.70

Table 2: Cross section pp → W+W−W+ in fb for different values of the factoriza-

tion(renormalization) scale. In the table above we set M = 3MZ .

scale σB σNLO K

µ = M/2 20.2(1) 43.0(2) 2.12

µ = M 20.0(1) 39.7(2) 1.99

µ = 2M 19.7(1) 37.8(2) 1.91

Table 3: Cross section pp → W+ZZ in fb for different values of the factorization(renormalization)

scale. In the table above we set M = 3MZ .

production has only a mild factorization scale dependence from the start, as the x values

are around the scaling region of the pdfs, the compensation of the leading logarithmic

terms accidentally does not improve the scale dependence here. The difference of using LO

or NLO pdfs is thus marginal. We have checked this fact for the process W+ZZ. By using

the NLO set CTEQ6M, instead of the LO set CTEQ6L1, we get σLO
WZZ = 21.2(1) fb and

σNLO
WZZ = 42.6(2) fb. Those numbers have to be compared with the second line of table 1.

In addition, in figure 7, we show the pT distribution produced by using the two different

sets of pdfs.
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Figure 7: Transverse momentum distribution, as defined in the text, for the processes pp →
W+ZZ. The solid histograms are produced with CTEQ6M pdfs and the dashed ones with

CTEQ6L1 pdfs. The upper curves are the NLO results while the two lower curves are the LO

contributions.

5. Summary and conclusions

In this paper we considered the production of three vector bosons at the LHC. We discussed

four processes, namely ZZZ, W+W−Z, W+ZZ, and W+W−W+ production: for each

process we calculated the next-to-leading order QCD corrections, presenting our results in

the form of transverse momentum and rapidity distributions. The QCD corrections are

quite sizable, with a K-factor of order 2. The K-factor is rather uniform in pT distributions,

while shows an important dependence on the phase space as far as rapidity distributions

are concerned. Given the size of the corrections the QCD corrections have to be taken into

account in experimental studies at the LHC.

This paper also represents the first complete calculation of physical cross-sections per-

formed using the recently introduced OPP method for the reduction of one-loop amplitudes,

in which the reduction to known integrals is performed at the integrand level, using the

Fortran code CutTools.

The efficiency of the OPP method is quite good. It can be further improved by

developing the numerical evaluation of the integrand in the one-loop amplitude by means

of recursion relations [46], without relying on Feynman diagrams.

We conclude that the OPP method is a viable alternative to perform phenomeno-

logically relevant one-loop calculations, as it does not rely on the recursive evaluation of

scalar and tensor momentum integrals. Its versatility and simplicity make it a very good

candidate for the construction of a universal NLO calculator/event-generator.
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